Physics ∩ ML

a virtual hub at the interface of theoretical physics and deep learning.

01 Jul 2020

Learning for Safety-Critical Control in Dynamical Systems

Yisong Yue, CalTech, 12:00 EDT

Abstract: This talk describes ongoing research at Caltech on integrating learning into the design of safety-critical controllers for dynamical systems. To achieve control-theoretic safety guarantees while using powerful function classes such as deep neural networks, we must carefully integrate conventional control principles with learning into unified frameworks. I will present two paradigms: integration in dynamics modeling and integration at the policy/controller design. A special emphasis will be placed on methods that both admit relevant safety guarantees and are practical to deploy.

Slides and video of the talk are both available.